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Abstract

In aspect-based sentiment analysis, extract-
ing aspect terms along with the opinions be-
ing expressed from user-generated content is
one of the most important subtasks. Previ-
ous studies have shown that exploiting con-
nections between aspect and opinion terms is
promising for this task. In this paper, we pro-
pose a novel joint model that integrates recur-
sive neural networks and conditional random
fields into a unified framework for explicit as-
pect and opinion terms co-extraction. The
proposed model learns high-level discrimina-
tive features and double propagates informa-
tion between aspect and opinion terms, simul-
taneously. Moreover, it is flexible to incor-
porate hand-crafted features into the proposed
model to further boost its information extrac-
tion performance. Experimental results on the
dataset from SemEval Challenge 2014 task 4
show the superiority of our proposed model
over several baseline methods as well as the
winning systems of the challenge.

1 Introduction

Aspect-based sentiment analysis (Pang and Lee,
2008; Liu, 2011) aims to extract important infor-
mation, e.g., opinion targets, opinion expressions,
target categories, and opinion polarities, from user-
generated content, such as microblogs, reviews, etc.
This task was first studied by Hu and Liu (2004a;
2004b), followed by Popescu and Etzioni (2005),
Zhuang et al. (2006), Zhang et al. (2010), Qiu et
al. (2011), Li et al. (2010). In aspect-based senti-
ment analysis, one of the goals is to extract explicit
aspects of an entity from text, along with the opin-
ions being expressed. For example, in a restaurant
review “I have to say they have one of the fastest de-

livery times in the city.”, the aspect term is delivery
times, and the opinion term is fastest.

Among previous work, one of the approaches
is to accumulate aspect and opinion terms from a
seed collection without label information, by utiliz-
ing syntactic rules or modification relations between
them (Qiu et al., 2011; Liu et al., 2013b). In the
above example, if we know fastest is an opinion
word, then delivery times is probably inferred to be
an aspect because fastest is its modifier. However,
this approach largely relies on hand-coded rules and
is restricted to certain Part-of-Speech (POS) tags,
e.g., opinion words are restricted to be adjectives.
Another approach focuses on feature engineering
based on predefined lexicons, syntactic analysis,
etc. (Jin and Ho, 2009; Li et al., 2010). A sequence
labeling classifier is then built to extract aspect and
opinion terms. This approach requires extensive ef-
forts for designing hand-crafted features and only
combines features linearly for classification which
ignores higher order interactions.

To overcome the limitations of existing methods,
we propose a novel model, named Recursive Neu-
ral Conditional Random Fields (RNCRF). Specif-
ically, RNCRF consists of two main components.
The first component is a recursive neural network
(RNN)1 (Socher et al., 2010) based on a depen-
dency tree of each sentence. The goal is to learn
a high-level feature representation for each word in
the context of each sentence and make the represen-
tation learning for aspect and opinion terms inter-
active through the underlying dependency structure
among them. The output of the RNN is then fed into
a Conditional Random Field (CRF) (Lafferty et al.,
2001) to learn a discriminative mapping from high-

1Note that in this paper, RNN stands for recursive neural
network instead of recurrent neural network.
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level features to labels, i.e., aspects, opinions, or
others, so that context information can be well cap-
tured. Our main contributions are to use RNN for
encoding aspect-opinion relations in high-level rep-
resentation learning and to present a joint optimiza-
tion approach based on maximum likelihood and
backpropagation to learn the RNN and CRF com-
ponents simultaneously. In this way, the label in-
formation of aspect and opinion terms can be dually
propagated from parameter learning in CRF to rep-
resentation learning in RNN. We conduct expensive
experiments on the dataset from SemEval challenge
2014 task 4 (subtask 1) (Pontiki et al., 2014) to ver-
ify the superiority of RNCRF over several baseline
methods as well as the winning systems of the chal-
lenge.

2 Related Work

2.1 Aspects and Opinions Co-Extraction

Hu et al. (2004a) proposed to extract product aspects
through association mining, and opinion terms by
augmenting a seed opinion set using synonyms and
antonyms in WordNet. In follow-up work, syntactic
relations are further exploited for aspect/opinion ex-
traction (Popescu and Etzioni, 2005; Wu et al., 2009;
Qiu et al., 2011). For example, Qiu et al. (2011) used
syntactic relations to double propagate and augment
the sets of aspects and opinions. Although the above
models are unsupervised, they heavily depend on
predefined rules for extraction and are restricted to
specific types of POS tags for product aspects and
opinions. Jin et al. (2009), Li et al. (2010), Jakob
et al. (2010) and Ma et al. (2010) modeled the ex-
traction problem as a sequence tagging problem and
proposed to use HMMs or CRFs to solve it. These
methods rely on rich hand-crafted features and do
not consider interactions between aspect and opin-
ion terms explicitly. Another direction is to use word
alignment model to capture opinion relations among
a sentence (Liu et al., 2012; Liu et al., 2013a). This
method requires sufficient data for modeling desired
relations.

Besides explicit aspects and opinions extraction,
there are also other lines of research related to
aspect-based sentiment analysis, including aspect
classification (Lakkaraju et al., 2014; McAuley et
al., 2012), aspect rating (Titov and McDonald, 2008;

Wang et al., 2011; Wang and Ester, 2014), domain-
specific and target-dependent sentiment classifica-
tion (Lu et al., 2011; Ofek et al., 2016; Dong et al.,
2014; Tang et al., 2015).

2.2 Deep Learning for Sentiment Analysis

Recent studies have shown that deep learning mod-
els can automatically learn the inherent semantic and
syntactic information from data and thus achieve
better performance for sentiment analysis (Socher et
al., 2011b; Socher et al., 2012; Socher et al., 2013;
Glorot et al., 2011; Kalchbrenner et al., 2014; Kim,
2014; Le and Mikolov, 2014). These methods gen-
erally belong to sentence-level or phrase/word-level
sentiment polarity predictions. Regarding aspect-
based sentiment analysis, Irsoy et al. (2014) ap-
plied deep recurrent neural networks for opinion ex-
pression extraction. Dong et al. (2014) proposed
an adaptive recurrent neural network for target-
dependent sentiment classification, where targets or
aspects are given as input. Tang et al. (2015) used
Long Short-Term Memory (LSTM) (Hochreiter and
Schmidhuber, 1997) for the same task. Neverthe-
less, there is little work in aspects and opinions co-
extraction using deep learning models.

To the best of our knowledge, the work of Liu
et al. (2015) and Yin et al. (2016) are the most re-
lated to ours. Liu et al. (2015) proposed to com-
bine recurrent neural network and word embeddings
to extract explicit aspects. However, the proposed
model simply uses recurrent neural network on top
of word embeddings, and thus its performance heav-
ily depends on the quality of word embeddings. In
addition, it fails to explicitly model dependency re-
lations or compositionalities within certain syntactic
structure in a sentence. Recently, Yin et al. (2016)
proposed an unsupervised learning method to im-
prove word embeddings using dependency path em-
beddings. A CRF is then trained with the embed-
dings independently in the pipeline.

Different from (Yin et al., 2016), our model does
not focus on developing a new unsupervised word
embedding methods, but encodes the information of
dependency paths into RNN for constructing syntac-
tically meaningful and discriminative hidden repre-
sentations with labels. Moreover, we integrate RNN
and CRF into a unified framework and develop a
joint optimization approach, instead of training word
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embeddings and a CRF separately as in (Yin et al.,
2016). Note that Weiss et al. (2015) proposed to
combine deep learning and structured learning for
language parsing which can be learned by structured
perceptron. However, they also separate neural net-
work training with structured prediction.

2.3 Recursive Neural Networks

Among deep learning methods, RNN has shown
promising results on various NLP tasks, such as
learning phrase representations (Socher et al., 2010),
sentence-level sentiment analysis (Socher et al.,
2013), language parsing (Socher et al., 2011a), and
question answering (Iyyer et al., 2014). The tree
structures used for RNNs include constituency tree
and dependency tree. In a constituency tree, all the
words lie at leaf nodes, each internal node repre-
sents a phrase or a constituent of a sentence, and the
root node represents the entire sentence (Socher et
al., 2010; Socher et al., 2012; Socher et al., 2013).
In a dependency tree, each node including terminal
and nonterminal nodes, represents a word, with de-
pendency connections to other nodes (Socher et al.,
2014; Iyyer et al., 2014). The resultant model is
known as dependency-tree RNN (DT-RNN). An ad-
vantage of using dependency tree over the other is
the ability to extract word-level representations con-
sidering syntactic relations and semantic robustness.
Therefore, we adopt DT-RNN in this work.

3 Problem Statement

Suppose that we are given a training set of cus-
tomer reviews in a specific domain, denoted by S=
{s1, ..., sN}, where N is the number of review sen-
tences. For any si∈S, there may exist a set of aspect
terms Ai = {ai1, ..., ail}, where each aij ∈ Ai can
be a single word or a sequence of words expressing
explicitly some aspect of an entity, and a set of opin-
ion terms Oi = {oi1, ..., oim}, where each oir can
be a single word or a sequence of words expressing
the subjective sentiment of the comment holder. The
task is to learn a classifier to extract the set of aspect
terms Ai and the set of opinion terms Oi from each
review sentence si∈S.

This task can be formulated as a sequence tag-
ging problem by using the BIO encoding scheme.
Specifically, each review sentence si is composed

of a sequence of words si = {wi1, ..., wini}. Each
word wip ∈ si is labeled as one out of the following
5 classes: BA (beginning of aspect), IA (inside of as-
pect), BO (beginning of opinion), IO (inside of opin-
ion), and O (others). Let L= {BA, IA,BO, IO,O}.
We are also given a test set of review sentences de-
noted by S′={s′1, ..., s′N ′}, where N ′ is the number
of test reviews. For each test review s′i∈S′, our ob-
jective is to predict the class label y′iq ∈ L for each
word w′iq. Note that a sequence of predictions with
BA at the beginning followed by IA are indication
of one aspect, which is similar for opinion terms.2

4 Recursive Neural CRFs

As described in Section 1, RNCRF consists of two
main components: 1) a DT-RNN to learn a high-
level representation for each word in a sentence, and
2) a CRF to take the learned representation as input
to capture context around each word for explicit as-
pect and opinion terms extraction. Next, we present
these two components in details.

4.1 Dependency-Tree RNNs

We begin by associating each word w in our vo-
cabulary with a feature vector x ∈ Rd, which cor-
responds to a column of a word embedding matrix
We ∈ Rd×v, where v is the size of the vocabulary.
For each sentence, we build a DT-RNN based on the
corresponding dependency parse tree with word em-
beddings as initialization. An example of the depen-
dency parse tree is shown in Figure 1(a), where each
edge starts from the parent and points to its depen-
dent with a syntactic relation.

In a DT-RNN, each node n, including leaf nodes,
internal nodes and the root node, in a specific sen-
tence is associated with a word w, an input feature
vector xw, and a hidden vector hn∈Rd of the same
dimension as xw. Each dependency relation r is as-
sociated with a separate matrix Wr∈Rd×d. In addi-
tion, a common transformation matrixWv∈Rd×d is
introduced to map the word embedding xw at node
n to its corresponding hidden vector hn.

2In this work we focus on extraction of aspect and opinion
terms, not polarity predictions on opinion terms. Polarity pre-
diction can be done by either post-processing on the extracted
opinion terms or redefining the BIO labels by encoding the po-
larity information.
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(a) Example of a dependency tree. (b) Example of a DT-RNN tree structure. (c) Example of a RNCRF structure.

Figure 1: Examples of dependency tree, DT-RNN structure and RNCRF structure for a review sentence.

Along with a particular dependency tree, a hidden
vector hn is computed from its own word embedding
xw at node n with the transformation matrixWv and
its children’s hidden vectors hchild(n) with the cor-
responding relation matrices {Wr}’s. For instance,
given the parse tree shown in Figure 1(a), we first
compute the leaf nodes associated with the words I
and the using Wv as follows,

hI = f(Wv · xI + b),

hthe = f(Wv · xthe + b),

where f is a nonlinear activation function and b is a
bias term. In this paper, we adopt tanh(·) as the ac-
tivation function. Once the hidden vectors of all the
leaf nodes are generated, we can recursively gener-
ate hidden vectors for interior nodes using the corre-
sponding relation matrix Wr and the common trans-
formation matrix Wv as follows,

hfood = f(Wv · xfood +WDET · hthe + b),

hlike = f(Wv · xlike +WDOBJ · hfood
+WNSUBJ · hI + b).

The resulting DT-RNN is shown in Figure 1(b). In
general, a hidden vector for any node n associated
with a word vector xw can be computed as follows,

hn = f


Wv · xw + b+

∑

k∈Kn

Wrnk
· hk


 , (1)

where Kn denotes the set of children of node n, rnk
denotes the dependency relation between node n and
its child node k, and hk is the hidden vector of the
child node k. The parameters of DT-RNN, ΘRNN =
{Wv,Wr,We, b}, are learned during training.

4.2 Integration with CRFs
CRFs are a discriminative graphical model for struc-
tured prediction. In RNCRF, we feed the output
of DT-RNN, i.e., the hidden representation of each
word in a sentence, to a CRF. Updates of parameters
for RNCRF are carried out successively from the
top to bottom, by propagating errors through CRF
to the hidden layers of RNN (including word em-
beddings) using backpropagation through structure
(BPTS) (Goller and Küchler, 1996).

Formally, for each sentence si, we denote the in-
put for CRF by hi, which is generated by DT-RNN.
Here hi is a matrix with columns of hidden vec-
tors {hi1, ..., hini} to represent a sequence of words
{wi1, ..., wini} in a sentence si. The model com-
putes a structured output yi = {yi1, ..., yini} ∈Y,
where Y is a set of possible combinations of la-
bels in label set L. The entire structure can be
represented by an undirected graph G = (V,E)
with cliques c ∈ C. In this paper, we employed
linear-chain CRF, which has two different cliques:
unary cliques (U) representing input-output connec-
tion, and pairwise cliques (P) representing adjacent
output connections, as shown in Figure 1(c). Dur-
ing inference, the model aims to output ŷ with the
maximum conditional probability p(y|h). (We drop
the subscript i here for simplicity.) The probability
is computed from potential outputs of the cliques:

p(y|h) =
1

Z(h)

∏

c∈C
ψc(h,yc), (2)

where Z(h) is the normalization term, and
ψc(h,yc) is the potential of clique c, computed as
ψc(h,yc) = exp 〈Wc, F (h,yc)〉, where the RHS is
the exponential of a linear combination of feature
vector F (h,yc) for clique c, and the weight vec-
tor Wc is tied for unary and pairwise cliques. We
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Figure 2: An example for computing input-ouput
potential for the second position like.

also incorporate a context window of size 2T + 1
when computing unary potentials (T is a hyper-
parameter). Thus, the potential of unary clique at
node k can be written as

ψU (h, yk) = exp

(
(W0)yk ·hk +

T∑

t=1

(W−t)yk ·hk−t

+
T∑

t=1

(W+t)yk · hk+t

)
, (3)

where W0, W+t and W−t are weight matrices of the
CRF for the current position, the t-th position to the
right, and the t-th position to the left within context
window, respectively. The subscript yk indicates the
corresponding row in the weight matrix.

For instance, Figure 2 shows an example of win-
dow size 3. At the second position, the input features
for like are composed of the hidden vectors at posi-
tion 1 (hI), position 2 (hlike) and position 3 (hthe).
Therefore, the conditional distribution for the entire
sequence y in Figure 1(c) can be calculated as

p(y|h)=
1

Z(h)
exp

(
4∑

k=1

(W0)yk
·hk+

4∑

k=2

(W−1)yk
·hk−1

+

3∑

k=1

(W+1)yk
·hk+1+

3∑

k=1

Vyk,yk+1

)
,

where the first three terms in the exponential of the
RHS consider unary clique while the last term con-
siders the pairwise clique with matrix V represent-
ing pairwise state transition score. For simplicity
in description on parameter updates, we denote the
log-potential for clique c ∈ {U,P} by gc(h,yc) =
〈Wc, F (h,yc)〉.

4.3 Joint Training for RNCRF
Through the objective of maximum likelihood, up-
dates for parameters of RNCRF are first conducted
on the parameters of the CRF (unary weight matri-
ces ΘU = {W0,W+t,W−t} and pairwise weight
matrix V ) by applying chain rule to log-potential
updates. Below is the gradient for ΘU (updates for

V are similar through the log-potential of pairwise
clique gP (y′k, y

′
k+1)):

4ΘU =
∂ − log p(y|h)

∂gU (h, y′k)
· ∂gU (h, y′k)

∂ΘU
, (4)

where

∂ − log p(y|h)

∂gU (h, y′k)
= −(1yk=y′

k
− p(y′k|h)), (5)

and y′k represents possible label configuration of
node k. The hidden representations of each word
and the parameters of DT-RNN are updated sub-
sequently by applying chain rule with (5) through
BPTS as follows,

4hroot =
∂ − log p(y|h)

∂gU (h, y′root)
· ∂gU (h, y′root)

∂hroot
, (6)

4hk 6=root =
∂ − log p(y|h)

∂gU (h, y′k)
· ∂gU (h, y′k)

∂hk

+4hpar(k) ·
∂hpar(k)
∂hk

, (7)

4ΘRNN =
K∑

k=1

∂ − log p(y|h)

∂hk
· ∂hk
∂ΘRNN

, (8)

where hroot represents the hidden vector of the word
pointed by ROOT in the corresponding DT-RNN.
Since this word is the topmost node in the tree, it
only inherits error from the CRF output. In (7),
hpar(k) denotes the hidden vector of the parent node
of node k in DT-RNN. Hence the lower nodes re-
ceive error from both the CRF output and error prop-
agation from parent node. The parameters within
DT-RNN, ΘRNN, are updated by applying chain
rule with respect to updates of hidden vectors, and
aggregating among all associated nodes, as shown
in (8). The overall procedure of RNCRF is summa-
rized in Algorithm 1.

5 Discussion

The best performing system (Toh and Wang, 2014)
for SemEval challenge 2014 task 4 (subtask 1) em-
ployed CRFs with extensive hand-crafted features
including those induced from dependency trees.
However, their experiments showed that the addition
of the features induced from dependency relations
does not improve the performance. This indicates
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Algorithm 1 Recursive Neural CRFs
Input: A set of customer review sequences: S =
{s1, ..., sN}, and feature vectors of d dimensions for each
word {xw}’s, window size T for CRFs
Output: Parameters: Θ=

{
ΘRNN,ΘU , V

}
Initialization: Initialize We using word2vec. Initialize Wv

and {Wr}’s randomly with uniform distribution between[
−

√
6√

2d+1
,
√
6√

2d+1

]
. Initialize W0, {W+t}’s, {W−t}’s, V ,

and b with all 0’s
for each sentence si do

1: Use DT-RNN (1) to generate hi

2: Compute p(yi|hi) using (2)
3: Use the backpropagation algorithm to update parame-
ters Θ through (4)-(8)

end for

the difficulty of incorporating dependency structure
explicitly as input features, which motivates the de-
sign of our model to use DT-RNN to encode depen-
dency between words for feature learning. The most
important advantage of RNCRF is the ability to learn
the underlying dual propagation between aspect and
opinion terms from the tree structure itself. Specif-
ically as shown in Figure 1(c), where the aspect is
food and the opinion expression is like. In the de-
pendency tree, food depends on like with the relation
DOBJ. During training, RNCRF computes the hid-
den vector hlike for like, which is also obtained from
hfood. As a result, the prediction for like is affected
by hfood. This is one-way propagation from food
to like. During backpropagation, the error for like is
propagated through a top-down manner to revise the
representation hfood. This is the other-way propa-
gation from like to food. Therefore, the dependency
structure together with the learning approach help to
enforce the dual propagation of aspect-opinion pairs
as long as the dependency relation exists, either di-
rectly or indirectly.

5.1 Adding Linguistic/Lexicon Features

RNCRF is an end-to-end model, where feature engi-
neering is not necessary. However, it is flexible to in-
corporate light hand-crafted features into RNCRF to
further boost its performance, such as features from
POS tags, name-list, or sentiment lexicon. These
features could be appended to the hidden vector of
each word, but keep fixed during training, unlike
learnable neural inputs and the CRF weights as de-
scribed in Section 4.3. As will be shown in exper-

Domain Training Test Total
Restaurant 3,041 800 3,841
Laptop 3,045 800 3,845
Total 6,086 1,600 7,686

Table 1: SemEval Challenge 2014 task 4 dataset

iments, RNCRF without any hand-crafted features
slightly outperforms the best performing systems
that involve heavy feature engineering efforts, and
RNCRF with light feature engineering can achieve
even better performance.

6 Experiment

6.1 Dataset and Experimental Setup
We evaluate our model on the dataset from SemEval
Challenge 2014 task 4 (subtask 1), which includes
reviews from two domains: restaurant and laptop3.
The detailed description of the dataset is given in
Table 1. As the original dataset only includes manu-
ally annotate labels for aspect terms but not for opin-
ion terms, we manually annotated opinion terms for
each sentence by ourselves to facilitate our experi-
ments.

For word vector initialization, we train word em-
beddings with word2vec (Mikolov et al., 2013) on
the Yelp Challenge dataset4 for the restaurant do-
main and on the Amazon reviews dataset5 (McAuley
et al., 2015) for the laptop domain. The Yelp dataset
contains 2.2M restaurant reviews with 54K vocab-
ulary size. For the Amazon reviews, we only ex-
tracted the electronic domain that contains 1M re-
views with 590K vocabulary size. We vary differ-
ent dimensions for word embeddings and chose 300
for both domains. Empirical sensitivity studies on
different dimensions of word embeddings are also
conducted. Dependency trees are generated using
Stanford Dependency Parser (Klein and Manning,
2003). Regarding CRFs, we implement a linear-
chain CRF using CRFSuite (Okazaki, 2007). Be-
cause of the relatively small size of training data
and a large number of parameters, we perform pre-
training on the parameters of DT-RNN with cross-

3Experiments with more publicly available datasets, e.g.
restaurant review dataset from SemEval Challenge 2015 task
12 will be conducted in our future work.

4http://www.yelp.com/dataset challenge
5http://jmcauley.ucsd.edu/data/amazon/links.html
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entropy error, which is a common strategy for deep
learning (Erhan et al., 2009). We implement mini-
batch stochastic gradient descent (SGD) with a batch
size of 25, and an adaptive learning rate (AdaGrad)
initialized at 0.02 for pretraining of DT-RNN, which
runs 4 epochs for the restaurant domain and 5 epochs
for the laptop domain. For parameter learning of the
joint model RNCRF, we implement SGD with a de-
caying learning rate initialized at 0.02. We also try
with varying context window size, and use 3 for the
laptop domain and 5 for the restaurant domain, re-
spectively. All parameters are chosen by cross vali-
dation.

As discussed in Section 5.1, hand-crafted features
can be easily incorporated into RNCRF. We gen-
erate three types of simple features based on POS
tags, name-list and sentiment lexicon to show fur-
ther improvement by incorporating these features.
Following (Toh and Wang, 2014), we extract two
sets of name list from the training data for each
domain, where one includes high-frequency aspect
terms, and the other includes high-probability as-
pect words. These two sets are used to construct two
lexicon features, i.e. we build a 2D binary vector:
if a word is in a set, the corresponding value is 1,
otherwise 0. For POS tags, we use Stanford POS
tagger (Toutanova et al., 2003), and convert them
to universal POS tags that have 15 different cate-
gories. We then generate 15 one-hot POS tag fea-
tures. For sentiment lexicon, we use the collection of
commonly used opinion words (around 6,800) (Hu
and Liu, 2004a). Similar to name list, we create a bi-
nary feature to indicate whether the word belongs to
opinion lexicon. We denote by RNCRF+F the pro-
posed model with the three types of features.

Compared to the winning systems of SemEval
Challenge 2014 task 4 (subtask 1), RNCRF or RN-
CRF+F uses additional labels of opinion terms for
training. Therefore, to conduct fair comparison ex-
periments with the winning systems, we implement
RNCRF-O by omitting opinion labels to train our
model (i.e., labels become “BA”, “IA”, “O”). Ac-
cordingly, we denote by RNCRF-O+F the RNCRF-
O model with the three additional types of hand-
crafted features.

6.2 Experimental Results

We compare our model with several baselines:

• CRF-1: a linear-chain CRF with standard lin-
guistic features including word string, stylis-
tics, POS tag, context string, and context POS
tags.

• CRF-2: a linear-chain CRF with both stan-
dard linguistic features and dependency infor-
mation including head word, dependency rela-
tions with parent token and child tokens.

• LSTM: an LSTM network built on top of word
embeddings proposed by (Liu et al., 2015). We
keep original settings in (Liu et al., 2015) but
replace their word embeddings with ours (300
dimension). We try different hidden layer di-
mensions (50, 100, 150, 200) and reported the
best result with size 50.

• LSTM+F: the above LSTM model with the
three additional types of hand-crafted features
as with RNCRF.

• SemEval-1, SemEval-2: the top two winning
systems for SemEval challenge 2014 task 4
(subtask 1).

• WDEmb+B+CRF6: the model proposed
by (Yin et al., 2016) using word and de-
pendency path embeddings combined with
linear context embedding features, dependency
context embedding features and hand-crafted
features (i.e., feature engineering) as CRF
input.

The comparison results are shown in Table 2 for both
the restaurant domain and the laptop domain. Note
that we provide the same annotated dataset (both as-
pect labels and opinion labels are included for train-
ing) for CRF-1, CRF-2 and LSTM for fair compar-
ison. It is clear that our proposed model RNCRF
achieves superior performance compared with most
of the baseline models. The performance is even bet-
ter by adding simple hand-crafted features, i.e., RN-
CRF+F, with 0.92% and 3.87% absolute improve-
ment over the best system in the challenge for aspect
extraction for the restaurant domain and the laptop
domain, respectively. This shows the advantage of

6We report the best results from the original paper (Yin et
al., 2016).
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Restaurant Laptop
Models Aspect Opinion Aspect Opinion
SemEval-1 84.01 - 74.55 -
SemEval-2 83.98 - 73.78 -
WDEmb+B+CRF 84.97 - 75.16 -
CRF-1 77.00 78.95 66.21 71.78
CRF-2 78.37 78.65 68.35 70.05
LSTM 81.15 80.22 72.73 74.98
LSTM+F 82.99 82.90 73.23 77.67

RNCRF-O 82.73 - 74.52 -
RNCRF-O+F 84.25 - 77.26 -
RNCRF 84.05 80.93 76.83 76.76
RNCRF+F 84.93 84.11 78.42 79.44

Table 2: Comparison results in terms of F1 scores.

combining high-level continuous features and dis-
crete hand-crafted features. Though CRFs usually
show promising results in sequence tagging prob-
lems, they fail to achieve comparable performance
when lacking of extensive features (e.g., CRF-1). By
adding dependency information explicitly in CRF-
2, the result only improves slightly for aspect ex-
traction. Alternatively, by incorporating dependency
information into a deep learning model (e.g., RN-
CRF), the result shows more than 7% improvement
for aspect extraction and 2% for opinion extraction.

By removing the labels for opinion terms,
RNCRF-O produces inferior results than RNCRF
because the effect of dual propagation of aspect and
opinion pairs disappears with the absence of opinion
labels. This verifies our previous assumption that
DT-RNN could learn the interactive effects within
aspects and opinions. However, the performance of
RNCRF-O is still comparable to the top systems and
even better with the addition of simple linguistic fea-
tures: 0.24% and 2.71% superior than the best sys-
tem in the challenge for the restaurant domain and
the laptop domain, respectively. This shows the ro-
bustness of our model even without additional opin-
ion labels.

LSTM has shown comparable results for aspect
extraction (Liu et al., 2015). However, in their
work, they used well-pretrained word embeddings
by training with large corpus or extensive external
resources, e.g., chunking, and NER. To compare
their model with RNCRF, we re-implement LSTM
with the same word embedding strategy and label-
ing resources as ours. The results show that our

Restaurant Laptop
Models Aspect Opinion Aspect Opinion
DT-RNN+SoftMax 72.45 69.76 66.11 64.66
CRF+word2vec 82.57 78.83 63.62 56.96
RNCRF 84.05 80.93 76.83 76.76
RNCRF+POS 84.08 81.48 77.04 77.45
RNCRF+NL 84.24 81.22 78.12 77.20
RNCRF+Lex 84.21 84.14 77.15 78.56
RNCRF+F 84.93 84.11 78.42 79.44

Table 3: Impact of different components.

model outperforms LSTM in aspect extraction by
2.90% and 4.10% for the restaurant domain and
the laptop domain, respectively. We conclude that
a standard LSTM model fails to extract the rela-
tions between aspect and opinion terms. Even with
the addition of same linguistic features, LSTM is
still inferior than RNCRF itself in terms of as-
pect extraction. Moreover, our result is compara-
ble with WDEmb+B+CRF in the restaurant domain
and better in the laptop domain (+3.26%). Note that
WDEmb+B+CRF appended dependency context in-
formation into CRF while our model encode such
information into high-level representation learning.

To test the impact of each component of RNCRF
and the three types of hand-crafted features, we con-
duct experiments on different model settings:

• DT-RNN+SoftMax: rather than using a CRF,
a softmax classifier is used on top of DT-RNN.

• CRF+word2vec: a linear-chain CRF with
word embeddings only without using DT-RNN.

• RNCRF+POS/NL/Lex: the RNCRF model
with POS tag or name list or sentiment lexicon
feature(s).

The comparison results are shown in Table 3. Sim-
ilarly, both aspect and opinion term labels are pro-
vided for training for each of the above mod-
els. Firstly, RNCRF achieves much better re-
sults compared to DT-RNN+SoftMax (+11.60% and
+10.72% for the restaurant domain and the lap-
top domain in aspect extraction). This is because
DT-RNN fails to fully exploit context information
for sequence labeling, which, in contrast, can be
achieved by CRF. Secondly, RNCRF outperforms
CRF+word2vec, which proves the importance of
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Figure 3: Sensitivity studies on word embeddings.

DT-RNN for modeling interactions between aspects
and opinions. Hence, the combination of DT-RNN
and CRF inherits the advantages from both mod-
els. Moreover, by separately adding hand-crafted
features, we can observe that name-list-based fea-
tures and the sentiment lexicon feature are most ef-
fective for aspect extraction and opinion extraction,
respectively. This may be explained by the fact that
name-list-based features usually contain informative
evident for aspect terms and sentiment lexicon pro-
vides explicit indication about opinions.

Besides the comparison experiments, we also
conduct sensitivity test for our proposed model in
terms of word vector dimensions. We tested a set of
different dimensions ranging from 25 to 400, with
25 increment. The sensitivity plot is shown in Fig-
ure 3. The performance for aspect extraction is
smooth with different vector lengths for both do-
mains. For restaurant domain, the result is stable
when dimension is larger than or equal to 100, with
the highest at 325. For the laptop domain, the best
result is at dimension 300, but with relatively small

variations. For opinion extraction, the performance
reaches a good level when the dimension is larger
than or equal to 75 for the restaurant domain and
125 for the laptop domain. This proves the stability
and robustness of our model.

7 Conclusion

We have presented a joint model, RNCRF, that
achieves the state-of-the-art performance for explicit
aspect and opinion term extraction on a benchmark
dataset. With the help of DT-RNN, high-level fea-
tures can be learned by encoding the underlying dual
propagation of aspect-opinion pairs. RNCRF com-
bines the advantages of DT-RNNs and CRFs, and
thus outperforms the traditional rule-based meth-
ods in terms of flexibility, because aspect terms and
opinion terms are not only restricted to certain ob-
served relations and POS tags. Compared to fea-
ture engineering methods with CRFs, the proposed
model saves much effort in composing features, and
it is able to extract higher-level features obtained
from non-linear transformations.
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